
I,

NCS-TIB-88-6

~ NATIONAL COMMUNICATIONS SYSTEM

0

ID

TECHNICAL INFORMATION BULLETIN
88-6

INVESTIGATION OF VECTOR QUANTIZATION
FOR THE

CODING OF GRAY SCALE IMAGES
FOR GROUP 4 FACSIMILE

DTIC

1 MAR 1989

?Is octniat hm bees wpvmw,
iw

io

Unclassified
SECURITY CLASSIFICATION OF THIS PACE

Form Approvd
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NCS TIB 88-6

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION(If applicable)

Delta Information Systems,
Inc.

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Horsham Business Center, Bldg. 3
300 Welsh Road
Horsham, PA 19044
8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
National Communications System NCS-TS DCA100-87-C-0078
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Office of Technology & Standards PROGRAM PROJECT TASK WORK UNITELEMENT NO NO NO ACCESSION NO
Washington, D.C. 20305-2010 33127K Qoll 87-003
11 TITLE (Include Security Classification)

Investigation of Vector Quantization for the Coding of Gray Scale Images for Group 4 Facsimil

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT '13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 115 PAGE COUNT
Final FROM TO August 1988 100
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Gray Scale Images

Group 4 Facsimile

19 ABSTRACT (Continue on reverse if necessary and identify by block number)Vector Quantization is a new gray scale coding technique showing the promise of large
compression ratios and good picture quality. No comprehensive study analyzing Vector
Quantization, as applied to Group 4 facsimile systems under carefully controlled conditions,
has been performed prior to this investigation. The purpose of this study was to evaluate
Vector Quantization to determine its relative effectiveness for the addition of gray scale
to Group 4 facsimile.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIEDUNLIMITED C3 SAME AS RPT [DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Janet Orndorff 202-692-2124 N S-TS
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLAS!FICATION OF THIS PAGE

Unclassified

U

NCS TECHNICAL INFORMATION BULLETIN 88-6

INVESTIGATION OF VECTOR QUANTIZATION FOR THE CODING
OF GRAY SCALE IMAGES FOR GROUP 4 FACSIMILEI

PROJECT OFFICER APPROVED FOR PUBLICATION:I

I DENNIS BODSON DENNIS BODSON
Assistant Manager Assistant Manager
Office of NCS Technology Office of NCS Technology

and Standards and Standards

FOREWORD

Among the responsibilities assigned to the Office of the Manager, National
Communications System, is the management of the Federal Telecommunication
Standards Program. Under this program, the NCS, with the assistance of the
Federal Telecommunication Standards Committee identified, develops, and

I coordinates proposed Federal Standards which either contribute to the
interoperability of functionally similar Federal telecommunication systems or
to the achievement of a compatible and efficient interface between computer and
telecommunication systems. In developing and coordinating these standards, a
considerable amount of effort is expended in initiating and pursuing joint
standards development efforts with appropriate technical committees of the
International Organization for Standardization, and the International Telegraph
and Telephone Consultative Committee of the International Telecommunication
Union. This Technical Information Bulletin presents and overview of an effort
which is contributing to the development of compatible Federal, national, and
international standards In the area of facsimile. It has been prepared to
inform interested Federal activities of the progress of these efforts. Any
comments, inputs or statements of requirements which could assist in the
advancement of this work are welcome and should be addressed to:

Office of the Manager Accession For

National Communications System TTS- PA&I
ATTN: NCS-TS DTIC TA3

Washington, DC 20305-2010 Unainnouiced 5IJustificntion

Distribution/_
Availability Codes

Avaif and/or

Dist Special

I
I
I
I
I

INVESTIGATION OF VECTOR QUANTIZATION
FOR THE CODING OF GRAY SCALE IMAGES

FOR GROUP 4 FACSIMILE

i AUGUST,1988

I
i SUBMITTED TO:

NATIONAL COMMUNICATIONS AGENCY

Office of Technology and Standards

WASHINGTON, D.C. 20305I
Contracting Agency:

DEFENSE COMMUNICATIONS AGENCY

3 Contract Number - DCAl00-87-C-0078

Task Number - 87-003I
I

D E L T A I N F O R MAT I O N S Y S T E M S, I NC
Horsham Business Center, Bldg. 3

300 Welsh Road
Horsham, PA 19044

TEL: (215, 657-5270 FAX: (215) 657-5273

I
I

I

I INVESTIGATION OF VECTOR QUANTIZATION
FOR THE CODING OF GRAY SCALE IMAGES

* FOR GROUP 4 FACSIMILE

TABLE OF CONTENTS

. IPAGE

1. INTRODUCTIONs .. 1 - 1
i .1 Synopsis........ 1 - 2

2.0 INITIAL INVESTIGATION 2 - 1
2.1. Definition of Vector Quantization 2 - 1
2.1.2. Simplified Description 2 - 1
2.1.2. Definition of Terms 2 - 2

I 2.2. Methods Investigated 2 - 4
2.2.1. Literature Search 2 - 4
2.2.2. Common Underlying Issues 2 - 5

2.2.2.1. Codebook Search 2 -6
2.2.2.2. Codebook Generation 2 - 7

2.3. Selected Method 2 - 9
2.3.1. Simplified Version 2 - 9
2.3.2. Reason for Selection 2 -10

3.0 SYSTEM OVERVIEW 3 - 1
3.1 Definition of Terms 3 - 1

3.2 System Description 3 - 4

4.0 DETAILED SYSTEM DESCRIPTION 4 - 1
4.1 The Codebook 4 - 1
4.1.1 Codebook Vectors 4 - 1

4.1.2 Search Tree and Codebook Partitioning 4 - 2
4.1.3 Thresholds....................................... 4 - 4

4.2 Codebook Generator 4 - 8
4.2.1 Training Vectors 4 - 8
4.2.2 General Description 4 -10
4.2.3 Signal-to-Noise Ratio Goal 4 -10
4.2.4 Tree Growth 4 -11
4.2.5 Zero-Error Nodes 4 -15

4.3 Transmitter-Simulator 4 -16
4.3.1 VQTX1 - Vector Index Generation 4 -16
4.3.2 Mean and Gain Image Processing 4 -19
4.3.3 VQTX1 - Vector Index Correction 4 -193 4.3.4 Transmission Statistics 4 -21

I

I
I

4.4 Receiver Simulator 4 -22
4.4.1 Image Reconstruction 4 -22
4.4.2 System Error Check 4 -22

5.0 SIMULATION .. 5 - 1
5.1 Image Selection Criteria 5 - 1
5.1.1 Test Images 5 - 1
5.1.2 Training Images 5 - 2

5.2 Simulation Parameters 5 - 2

5.3 Evaluation Criteria 5 - 5

5.4 Results .. 5 - 6

6.0 CONCLUSIONS AND RECOMMENDATIONS 6 - 1
6.1 Conclusions 6 - 1

6.2 Recommendations 6 - 5
6.2.1 Scaler Data Compression.......................... 6- 5
6.2.2 Interpolative Vector Quantization 6 - 7
6.2.3 Signed Gain Val es 6 - 7
6.2.4 Larger Block Size 6 - 8
6.2.5 Codebook Generator Refinements 6 - 9
6.2.5.1 Faster Algorithm 6 - 9

6.2.5.2 Signal-to-Noise Ratio Goal
for Each Tree Level 6 -10

6.2.6 Necessity of Separate Codebook
for Each Resolution 6 -10

6.2.7 Hardware/Firmware Implementation 6 -11

I
I
I
I

I

I

1.0 IntroductionI
This document summarizes work performed by Delta Information

I Systems, Inc., (DIS) for the Office of Technology and Standards

of the National Communications System, an organization of the U.

S. Government, headed by acting National Communications System

3 Assistant Manager Dennis Bodson. Mr. Bodson is responsible for

the management of the Federal Telecommunications Standards

Program, which develops telecommunications standards, the use of

which is mandatory for all Federal agencies. The purpose of this

study, performed under task order number 87-003 of contract

number DCA100-87-C-0078, was to investigate the effectiveness of

Vector Quantization when applied to the transmission of gray

* scale imagery via Group 4 facsimile.

At the present time, there are no CCITT Recommendations that

iprovide for the transmission of gray scale imagery via Group 4

facsimile; however, the CCITT is considering gray scale

ttransmission as a Group 4 option.

Vector Quantization is a new gray scale coding technique

showing the promise of large compression ratios and good picture

3 quality. No comprehensive study analyzing Vector Quantization,

as applied to Group 4 facsimile systems under carefully

I controlled conditions, has been performed prior to this

3 investigation. The purpose of this study was to evaluate Vector

Quantization to determine its relative effectiveness for the

3 addition of gray scale to Group 4 facsimile.

I 1- 1

I

U This report is comprised of six sections. Section 1.0

provides a brief synopsis of the study objectives and outlines

its results and conclusions. Section 2.0 describes the initial

3 investigation, includes a highly simplified description of the

Vector Quantization concept, and concludes with a brief outline

of the selected approach and the reasons for its selection.

Section 3.0 gives a system overview. Section 4.0 describes the

system in detail. Section 5.0 presents the simulation parameters

and results. Section 6.0 closes the report with conclusions and

recommendations for future investigation.I
i 1.1 Synopsis

The investigation was conducted in four major phases. The

first phase consisted of a study of published Vector Quantization

techniques and culminated in the selection of one to be evaluated

during the balance of the investigation. Simulation software for

the selected technique was developed in the second phase. The

third phase was devoted to the simulation of the transmission and

reception of the Standard Gray Scale Images, ['] and the fourth

phase consisted of evaluating the results, writing the final

* report and preparing all deliverable items for delivery.

The simulated algorithm begins by dividing the starting

I image into equal-sized rectangular blocks of pixels. For each

block, the transmitter computes and transmits the mean gray level

value of the block pixels. It then compares the difference

vector with a locally stored codebook (library) of normalized

S1- 2

I

I

(unit magnitude) vectors and selects that codebook vector which

is best correlated with the difference vector. It transmits the

dot product of the difference and codebook vectors, called

"gain," and the index to the selected codebook vector. The

receiver reconstructs an approximation of the starting image

block from the transmitted data and a locally stored copy of the

* codebook.

This algorithm was employed to compress the standard gray

scale images, which were originally digitized to 8 bits by pulse

code modulation (PCM).

The present system achieves a compression rate of 1.3 - 1.5

bits per pixel with very good image quality and 1.1 - 1.2 bits

with moderately good image quality. Of these 1.1 - 1.5 bits, one

whole bit is currently required for the mean and gain values

combined, and only 0.1 - 0.5 for the codebook vector index. It

I is estimated that the appropriate combination of differential

pulse code modulation (DPCM), tailored to the mean and gain data

statistics, and variable-length coding can compress the mean and

gain data to approximately 0.5 bits per pixel. This would yield

an overall compression rate of less than one bit per pixel.

-3

I

I

2.0 Initial Investigation

2.1. Definition of Vector Quantization

2.1.1. Simplified Descri tion

Vector Quantization beings by dividing an image to be

transmitted into rectangular blocks of pixels, all blocks having

the same dimensions. The transmitter compares each block with a

large library of typical blocks, called a "codebook," and

selects the library block that best approximates the block to be

transmitted. The transmitter then encodes and transmits the

index to the selected library block. The receiver, equipped with

I a copy of the codebook, decodes the index, retrieves the selected

library block and inserts it into the output image.

This process is called Vector Quantization because, both

theoretically and computationally, each block is treated as a

vector. The vector representation of a block can be thought of

as laying out all the gray-scale values of the block pixels in a

single string, that of the upper left pixel first, and of the

lower right last. Such a string of numbers comprises a vector in

k-dimensional space, where k is the number of pixels in the

block. When the block is treated in this manner, the entire body

of mathematical knowledge of vector analysis and multi-

dimensional analytical geometry can be brought to bear on the

I Vector Quantization problem. In the balance of this report, the

3 terms "block" and "vector" will be used interchangeably, with

"block" referring to a rectangular array of pixels in an image,

* and "vector" referring to the representation of these pixels as a

I2

I
string of numbers.

In all the variations of Vector Quantization to be discussed

below, there is a trade-off between image quality and data

i compression. In the theoretical limit of zero distortion, the

codebook would contain vectors representing all possible blocks.

An exact match would always be found. Distortionless transmission

would, however, entail an enormous codebook and little data

compression, even with optimal coding. At the other extreme, a

codebook containing few vectors (representative blocks) would

yield large compression ratios, but poor image quality. The

objective of any Vector Quantization system design is, therefore,

to achieve the best compromise among codebook size, data

compression and received imag quality.I
2.1.2. Definition of Terms

i The following terms apply generally to Vector Quantization;

additional terms that apply specifically to the selected approach

are defined later.

i Vector

A vector is an ordered sequence of numbers, for example, the

i sequence of gray-scale values in one image block.

Vector Component

A vector component is one of the numbers in the sequence of

numbers comprising a vector (for example, the gray-scale

value of one pixel in a block).

I

I

I

Vector Magn:.tude

3 The magnitude of a vector is the square root of the sum of

the squares of the vector components.

I Distance Between Two Vectors

The distance between two vectors is the square root of the

sum of the squares of the differences between the respective

components of the two vectors. The distance between two

identical vectors is zero.

Vector Distortion

Vector distortion refers to the distortion incurred in a

I block resulting from selecting a codebook vector thatu approximates the vector to be transmitted. In most Vector

Quantization analyses, the distortion is defined as the

3 distance between the two vectors, or the square of the

distance. This definition is assumed throughout the balance

* of this report unless otherwise specified.

Centroid

enThe centroid of a set of vectors is a vector, each of whose

components is the average of the corresponding components of

all the zectors in the set. The centroid vector is not

* necessarily one of the vectors from which it is formed.

The vector having minimum mean square distance to the

I vectors in the set is the centroid vector.

I
I

I

I

2.2. Methods Investigated

2.2.1. Literature Search

A review of published papers revealed many variations on the

I Vector Quantization there. Gersho[2] presents a mathematical

treatment of the problem. The codebook is, in effect, the vector

quantizer in that it "quantizes" the multi-dimensional vector

"space" into a finite set of representative vectors. Gersho goes

on to explore the partitioning problem, and concludes that the

only practical way to design the quantizer (select the vectors to

be included in the codebook) is to take advantage of vector

I clustering.

The basic vector clustering algorithm was thoroughly

developed by Linde, Buzo and Gray. [31 This algorithm, known

as the LBG algorithm, takes advantage of the fact that the vector

representat1-ns of image blocks tend to cluster in the vector

I space. A codebook containing vectors representing the cluster

centroids offers the best compromise between codebook size and

received image quality. The method consists of using a long

sequence of "training" vectors to design the codebook. The

authors note that this basic method yields a locally optimized

codebook in that a slight perturbation of any codebook vector

increases the average distortion with respect to the training

I vectors. The authors offer an interesting variation in which

global optimization (best possible codebook for the training

vector set) is more likely when the optimization is started with

* a large amount of random noise superimposed on the training

S2- 4

I

I

vectors. The optimization is refined by repeated iterations with

the noise gradually reduced to zero.

Gray and Linde(' explain and compare several variations

I on the LBG codebook generation method and compare the resulting

performances of Gauss-Markov sources. In particular, the authors

show that tree-assisted codebook searches allow the use of

codebooks much larger than those practical with exhaustive

searches at the expense of a suboptimal codebook. The

performance is only slightly degraded with respect to the

exhaustive-search approach.

Hang and Woods [1] discuss predictive vector quantization,

which consists of a combination of predictive filtering and

vector quantization. The purpose of the predictive filtering is

to remove redundancy before vector quantizing the residue.

A vector quantization method that offers great promise of

* good compression and low distortion is described in Japan Annex

4.61 This method combines DPCM (Differential Pulse Code

Modulation) and vector quantization. Since this approach was

selected for simulation, further description is deferred to a

later section of this report.

Other references studied include Helden and Boekeej 7 1

Dutch PTTI 8 1 and Gersho and Ramamarthi. 9]I
2.2.2. Common Underlying Issues

Vector Quantization, in all its forms, requires a large

codebook of vectors from which one is selected for each block to

S2-5

I

be transmitted. Two very important issues are therefore: (1)

codebook search and (2) codebook generation.

2.2.2.1. Codebook Search

There are two basic search methods: exhaustive and tree-

assisted. The exhaustive method is guaranteed to select the

codebook vector that best matches the input vector (block in the

input image). This method is practical, however, only for

very small block sizes, because the search time grows

exponentially with block size. A tree search is much faster. A

I binary tree search begins with a choice between two

codebook vectors that act as "keys" to the next search level.

The selection of one of these "keys" leads to another two-way

choice, which leads to a better approximation of the input

vector, which leads to yet another two-way choice, etc.. This

method, though much faster than the exhaustive search, may fail

to find the best match, because once a two-way choice has been

made in a given tree level, the search may be directed to a

subtree that does not contain the best match. The general m-ary

tree search, in which an m-way choice is made at each decision

level, gives better performance as the value of m increases, at

the expense of longer search time. The exhaustive search is the

I limiting case of one M-way decision, where M is the total number

of codebook vectors.

I
I 2-_6

I

I

U 2.2.2.2. Codebook Generation

The codebook generation oojective 's a codebook that gives

low image distortion while minimizing the codebook size.

Minimizing the ccdebook size is important, not only

to minimize memory and search time, but also to achieve high

I compression ratios.

All codebook generation methods reported in the literature

are variations on the LBG (Linde, Buzo and Gray) method. In

principle, if one knew the statistics of all images to be

transmitted, one could generate a codebook analytically. The

I most commonly used method consists, however, of using a large

number of training vectors, each training vector representing a

"typical" image block. The use of training vectors is assumed in

* the balance of this report.

The literature makes frequent reference to training vectors,

3 but gives little detail as to how they are derived. A common

problem is a tendency to generate a codebook that performs well

with the images from which the training vectors are derived, and

* poorly with others.

DIS devoted considerable effort to training vector

generation and processing, as described in Sections 3.2, 4.2 and

5.1.2. The resulting codebooks were very robust, performing as

I well with images not included in the training vector set as those

* from which the training vectors were derived.

The following is a summary of the LBG codebook generation

method. Assume, for the moment, a partially optimized codebook.

S2- 7

I

I

I Each training vector "belongs" to a codebook vector in that the

training vector matches the codebook vector at least as well

as it matches any other. (Ties are broken in v;rious ways

3 depending cn the specific method used.)

The codebook is updated to make each codebook vector the

centroid of the set of training vectors that belong to it, thus

minimizing the average distortion with respect to that set of

training vectors. The update may, however, cause some of the

3 training vectors that belonged to a given codebook vector before

the update to belong to a different codebook vector afterward.

I Another iteration is therefore performed to compute new

centroids, and the codebook is updated again. This process is

repeated until there is no further improvement, or the

3 improvement is less than some specified value.

This iterative method of codebook improvement leads to a

3 local minimum of average distortion. A slight perturbation of

the codebook vectors gives greater distortion. This method

leaves the possibility that some large change to the codebook

might give even less distortion; hence the local minimum is not

necessarily the global minimum (best possible codebook for the

*t training vector set).

Codebook generation begins with one codebook vector which is

I the centroid of all the training vectors. This vector is then

split into two vectors very close to each other. The splitting

objective is to make the numbers of training vectors belonging to

the two codebook vectors approximately equal. The codebook is

S2- 8

I

I

I then optimized, as described above. The two (now optimized)

vectors are then split into four, and optimization is repeated.

The process is continued until a codebook of the required size is

* achieved.

The literature suggests guidelines for the selection of the

codebook size for various block sizes and distortion goals. Very

little is said about how to split existing vectors. Both of

these issues were addressed in depth during software design and

* development.

* 2.3. Selected Method

The selected method is based on the Japan Annex 4 paper,

"Component Vector Quantization," Annex 4 of CCITT Study Group

VIII, Geneva, 1-12 December 1986. This method will henceforth be

referred to as the "selected method" or the "Japan Annex 4

* method."

I 2.3.1. Simplified Description

For each block to be transmitted, the transmitter computes

the mean (average) value of the vector components (block pixel

* gray levels) and subtracts this value from each component,

leaving a zero-mean difference vector. The mean value is

I transmitted by DPCM (Differential Pulse Code Modulation). Next,

the transmitter performs a binary tree search of a codebook whose

vectors are normalized (see definition in Section 3.1). In

essence, a normalized vector is one in which the information

S2- 9

I

I

describing the overall block brightness and contrast has been

removed. The selected codebook vector is that which is most

closely correlated with the difference vector. The correlation

value, or "gain" (contrast information), is transmitted by DPCM.

The index to the selected codebook vector is also transmitted.

The receiver retrieves the normalized codebook vector

indicated by the codebook vector index, multiplies it by the

"gain" (correlation value) and adds the mean to give an output

vector which approximates the input vector.

The binary tree search is amplitude adaptive. A "flat"

I image block (all pixels having the same gray-scale value) can be

described by the mean value alone, and no vector index need be

transmitted. A nearly flat block requires only a coarse

correlation to the normalized codebook vector because the block's

contrast is so low that an accurate match is not required to give

low distortion. The binary tree search is therefore terminated

at low tree levels for low contrast blocks and at higher tree

levels for higher contrast blocks. The codebook vector index

codeword length is proportional to the block's contrast. Because

low contrast blocks occur more frequently than high, short

codebook vector index codes occur more frequently than long.

This method is therefore very efficient.I
2.3.2. Reason for Selection

The Japan Annex 4 method was selected because it is the most

* aggressive approach studied in terms of compression for a given

2 - 10

I

I
I

distortion. The codebook size is less for a given block size

than with other methods, and the coding is more efficient.

The codebook size is smaller because the system removes a

great deal of redundancy from the codebook vectors by removing

mean and gain (brightness and contrast) data. Because of the

relatively small codebook size for a given block size, a larger

block is feasible than would be with other methods. The larger

block spreads the "cost" of transmitting the mean and gain over

* more pixels.

Low contrast blocks require less accurate matching to a

codebook vector than do high-contrast blocks. This can easily be

seen by considering the limiting case of no contrast. In this

case no vector index need be transmitted; the block information

is contained entirely in the mean value. The codebook and

accompanying search tree are designed to terminate the search at

I low tree levels for low contrast blocks. The codebook vector

index codeword is short for low tree levels, longer for higher

tree levels. Thus, the codeword length is proportional to the

block contrast. Since low contrast blocks occur more frequently

than high, short codes occur more frequently than long.

I
I
I
I

I 2 - 11

I

i

3.0 System Overview

This section gives an overview of the DIS implementation of

i the Japan Annex 4 Vector Quantization method. The next section

describes the system in more detail.

* 3.1. Definition of Terms

The following terms are used to describe the DIS

i implementation.

Vector Mean

VcoA vector's mean is the average value of the vector

compone:.ts.

Zero-Mean Vector

A zero-mean vector is a vector whose mean is zero. It is

derived from a non-zero-mean vector by subtracting the

* vector mean from each vector component.

Normalized Vector

A normalized vector is a vector having unit magnitude. An

unnormalized vector is normalized by computing the vector

magnitude and dividing it into each component of the

unnormalized vector. A vector whose components are all zero

cannot be normalized, since the normalization process would

i entail dividing zero by zero. In the Japan Annex 4 context,

i normalized vectors are also zero-mean.

i
i -

I

Dot Product

The dot product, also called inner product or scaler

product, of two vectors is the sum of the products of their

corresponding components. It is equal to the magnitude of

one vector times the magnitude of the other times the cosine

of the angle defined by the two vectors, with the angle

i vertex at the vector space origin.

Gain

The word "gain," as used in this report, is defined as the

dot product of a difference (zero-mean) vector with the

I selected (normalized) codebook vector. The Japan Annex 4

paper defines gain (factor) as the magnitude of the

difference vector itself, and calls the dot product the

amplitude deviation. This terminology is avoided in this

report; "amplitude deviation" could connote some kind of

error, or deviation from some norm, and is therefore

confusing. Moreover, the symbol for "amplitude deviation"

in the reference is g. The words "magnitude" and "gain" in

* this document are therefore respectively equivalent to "gain

factor" and "amplitude deviation" in the reference.

* Search Tree

The codebook search tree is a binary tree structure with 1

I node (decision point) at tree level 0 (the tree root), 2 at

level 1, 4 at level 2, ... , 2L at any given level, L. One

codebook vector is assigned to each tree node.

I
i 3- 2

I

I

Absolute Codebook Vector Index

The absolute index of a codebook vector is that vector's

position in the codebook. The lowest index is 0.

Base Codebook Vector Index

For any given search tree level, the base codebook vector

index is the lowest absolute index of the codebook vectors

assigned to the tree nodes in that level. The codebook

contains a list of base codebook vector indices for the

* various tree levels.

Relative Codebook Vector Index

I The relative index of a codebook vector is that vector's

position in the codebook relative to the base index for the

vector's tree level, L. The lowest value is 0; the highest

2L-1. A relative codebook vector index is therefore an L-

bit binary number. This property is a system design

* cornerstone.

Gain Threshold

The gain threshold of a tree level controls the transmitter

codebook search and the receiver's codebook lookup. The

tree level of the selected codebook vector is such that the

* gain of the difference vector is at or below that level's

threshold and above the threshold of all lower tree levels.

I The codebook contains a list of gain thresholds for the

i various tree levels.

I
Il-

I

I 3.2. System Description

The Vector Quantization system processes digital images

only. Starting images are digitized to 8 bits per pixel, giving

a gray scale of 0 (black) through 255 (white). The starting

digital images are virtually indistinguishable from high-quality

analog images. These starting images are the standards with

which the ending images are compared.

Figure 3.1 shows the codebook generation subsystem. A

* training image (composite of actual images) is processed by a

training vector generation program, which creates a file of

normalized training vectors. The magnitudes of the zero-mean

vectors prior to normalization are carried with the vectors.

I Next, the training vectors are sorted into descending order

of vector magnitude. This reduces the execution time of the

codebook generator, as is explained in Section 4.2.4.

The codebook generator is based on the LBG algorithm. It

automatically determines the tree level gain thresholds, which

control the amplitude-adaptive tree searches. The thresholds are

determined by a pre-specified signal-to-noise ratio goal. This

automatic threshold generation feature may be novel; the Japan

Annex 4 reference does not explain how the gain range for a given

codebook vector codeword length is determined.

Figure 3.2 shows the transmitter simulation subsystem. The

transmission simulation was implemented in two stages to employ a

I DPCM data compression system developed under another

contract. (101

3- 4I
I

I
I
I

Training Image

BUILD-TV

i ITraining Vector
Generator

c Unsorted Training Vectors

I-
TVSORT

Training Vector
SortI

Sorted Training VectorsiT
BUILDCB

Codebook

Signal-to-Noise
Ratio Goal Reports

I
I

Figure 3.1 Codebook Generation

I
I 3-5

I

I
I Starting Image

I :- I Vector Index
I Generationl

Uncorrected Unquantized Unquantized
I (. Vector Indices Gains Means

I
__DPCM Data DPCM Data

Compression CompressionSystem System

C odebook Number of Number of

Reports Reports

Quantized Quantized
* ... Gains . Means

VQTX2

Vector Index
Correction

Number of
vectorIi

Statistics

I Corrected Vector Indices

I
Figure 3.2 Transmitter Simulation

I
* 3-6

I

I The transmitter transmits three items for each input vector:

(1) the vector mean by DPCM, (2) the vector gain by DPCM and

(3) the vector's relative codebook vector index by straight

binary code, L bits for tree level L, including no bits fvr tree

level 0. The receiver determines the tree level from the gain

and a list of gain thresholds in the receiver's codebook. From

the tree level the receiver determines the base codebook vector

index which, with the received relative index (known to be 0 if

the tree level is 0), yields the absolute index.

Program VQTXl extracts the vector means and writes them to

an unquantized mean file as 8-bit "pixels," with one pixel for

each vector mean value, i.e., per starting image block. VQTXl

I then performs an amplitude-adaptive tree search and writes the

gain of each block to an unquantized gain file, also as 8-bit

"pixels" VQTX1 then writes the relative codebook vector index of

each block to an uncorrected vector index file; VQTX1 also writes

the tree level to the index file for vector index correction.

The DPCM system processes the mean and gain "images" as it

would any other image and produces quantized mean and gain files,

I also in image format.

Program VQTX2 performs the codebook vector index correction.

This is necessary because the receiver receives a quantized gain

value for each vector. The quantized value may be different from

the unquantized value, and, in particular, may be on the opposite

I side of the gain threshold that determined the tree search ending

level. VQTX2 determines the tree level expected by the receiver

3- 7I
I

I

i and, if this level differs from the original level, VQTX2 finds a

codebook vector in the new tree level and "transmits" that

vector's relative codebook vector index instead of that of the

original codebook vector. Without vector index correction, the

receiver would not only receive the wrong index, it would expect

the wrong number of bits, thus throwing the rest of the

transmission out of synchronization.

Figure 3.3 shows the receiver simulator. For each vector,

* the receiver determines the tree level from the received gain

value and the gain threshold table in the receiver's codebook.

It then determines the codebook vector base index from the tree

level and adds the received relative index to arrive at the

i absolute index. The receiver retrieves the codebook vector,

i multiplies it by the gain and adds the mean to each component to

produce an output vector. Finally, it writes the output vector

as a block to the ending image file.

I
I
I
I
I
I

I3 - 8

I
I

IQuantized Quantized

Receiver
Codebook Simulator Corrected

Vector Indices

I Ending Image

3 Figure 3.3 Receiver Simulation

3I

I

4.0 Detailed System DescriptionI
The DIS Vector Quantization system implementation is based

I on the Japan Annex 4 method, but is not necessarily the same as

that used by its authors. The Japan Annex 4 paper is very terse,

giving only the basic concepts of a codebook containing

normalized vectors, transmitting the block mean and gain values

by DPCM, and the amplitude-adaptive tree search. The authors

touch on codebook generation by mentioning the LBG

clustering algorithm, but give no details. The algorithms

employed in the DIS simulation software may therefore contain

* novel features.

4.1. The Codebook

The codebook data structure is central to the entire system.

I The codebook contains the vector library, the search tree and

several small data arrays indexed by tree level.

4.1.1. Codebook Vectors

The codebook vectors are normalized, as they are in the

Japan Annex 4 method. In the DIS implementation, each vector

component occupies one byte of memory. Because one component of

I a normalized vector has the range -1 to 1, the usual

representation would be by a real (as opposed to integer) number,

which normally requires 4 bytes. In the current implementation,

i the normalized component value is scaled so that the one-byte

4 1

I
I

integer value contains 8 significant bits of fractional data

including sign. While introducing slight rounding errors (the

vector is not quite zero-mean and not quite normalized), this

I approach reduces the codebook memory requirements by a factor of

4. The rounding "noise" was determined to be well below the

noise introduced by vector quantization.

In addition to the normalized vector itself, each codebook

vector record contains a pointer into the search tree. This

pointer is required for vector index correction (described

later).I
4.1.2. Search Tree and Codebook Partitioning

Figure 4.1 shows the first three levels of a search tree.

Each tree node has a pointer to its parent, to its left child

(node below and to the left in the figure), and to its right

child. (The tree root node has no parent, and the tree "leaves"

have no children.)

Each search tree node also contains the relative codebook

vector index of the codebook vector belonging to that node. The

lowest index is 0, and the highest is 2L-I, where L is the tree

level. Thus, the relative codebook vector index for tree level L

is an L-bit binary number. (If a tree node is deleted, as

I explained later, its index is not used.)

The codebook vectors are partitioned into search tree

levels; that is, all the codebook vectors for one search tree

level are stored contiguously. Tree level 0 (the tree root) has

S4- 2

I

I
I
I
I
I

Tree Node

I Tree Level 0

I
I

Tree Level 1 2 3I

I TreeLevel 2 45 6 7

I
I
I
I

Figure 4.1 Codebook Search Tree

4-3

I
I

one codebook vector, tree level 1 has two, tree level 2 has four,

and so on. The codebook contains an auxiliary array giving the

base codebook vector index for each search tree level. The

absolute index to a codebook vector for any tree node is computed

by adding the relative codebook vector index for the node to the

base codebook vector index for the node's tree level, as shown in

* Figure 4.2.

Each codebook vector has a pointer to the tree node to which

it is assigned. Thus, there is a two-way link between each tree

node and its codebook vector.I
4.1.3. Thresholds

The amplitude-adaptive search and variable-length vector

index codes described in the Japan Annex 4 reference imply the

existence of gain ("amplitude deviation") thresholds associated

with the search tree levels. The reference includes a table of

vector index codeword length vs. gain ("amplitude deviation")

range. The reference gives no description of how the gain ranges

* were derived.

In the DIS implementation, the codebook generator

* automatically derives thresholds that control the tree searches.

The thresholds are derived from a single user input: a signal-to-

I noise ratio goal expressed in decibels.

Figure 4.3 shows the threshold principle. Figure 4.3(a)

illustrates the relationship among a starting zero-mean

(difference) vector to be quantized, the best codebook vector

S4- 4

I

0 04N I Ct)

L>

C')

C

>

(a)

0- CV,

4 5-

I

for that starting vector and the ending zero-mean vector

constructed by the receiver. The page represents the plane

determined by the starting and ending vectors and the

coordinate system origin. As the figure shows, the gain (dot

product of the starting vector and the (normalized) codebook

vector) is the magnitude of the ending zero-mean vector.

* The angle between the starting vector and the selected

codebook vector is a measure of the correlation between the two

vectors. The better the correlation (larger the dot product),

the smaller the angle. The more densely populated the vector

I space is by codebook vectors in the vicinity of the starting

vector, the smaller the angle will be.

Figure 4.3(b) illustrates the principle of the amplitude-

adaptive tree search. For a given distortion, the greater the

starting vector magnitude, the greater the required

correlation with the codebook vector (the smaller the angle).

Therefore, the greater the magnitude, the more densely the

codebook vector space must be populated to yield a given

distortion. Thus, the codebook is in effect partitioned by tree

level. There are twice as many codebook vectors for tree level

L+1 as there are for level L. A gain threshold is assigned to

each tree level to control where the tree search stops. If the

I gain is at or below the threshold, the search stops at this

level.

Note that Figure 4.3(b) refers to magnitudes, not gains; yet

the thresholds are based on gain. This is because the gain, not

S4- 7

I

I

the starting vector magnitude, is transmitted. The receiver does

not "know" the starting vector magnitude. The gain is

transmitted because the distortion is less than if the magnitude

were transmitted, as is shown in Figure 4.4. (Gain value error

due to DPCM transmission is neglected here for simplicity.) The

initial tree search is based on the starting vector magnitude,

and a correction is later made to base the final selection on

gain.I
4.2. Codebook Generator

1 4.2.1. Training Vectors

* The training vectors are generated by two preprocessing

steps prior to codebook generation. The process begins with a

training image, which is a composite of selected portions of

three of the four standard gray scale images.

*The training vector generator builds the training vectors

from the image. Each image block is converted to vector form,

the mean is subtracted from each component, and the resulting

zero-mean vector is normalized. ("Flat" blocks are discarded

because zero-magnitude vectors cannot be normalized.) The

normalized vector and the magnitude of the unnormalized zero-mean

vector are written to a training vector file.

* The training vector generator generates one training vector

per image block and per each possible offset of the block with

respect to the image boundaries. Thus, training image features

* are represented in all possible positions in a block.

S4- 8

I

I I

I

Ch

(D)

iv

00

I
1

>W-g gF
x'x'

I I
E0

Co

i - ,. -o
I-

0

x x
C

4. 6

I °U

I -

I

I
I
I
I

distoto

i (a) Transmitting Gain

I

ix

I 'distortion

magnitude

I (b) Transmitting Magnitude

I
i

Figure 4.4 Transmitting Gain vs. Magnitude

i
I
i 4-9

I

Next, the training vectors are sorted into descending order

of (unnormalized vector) magnitude for reasons to become clear

momentarily. The sorted training vector file is the input to the

I codebook generator.

I 4.2.2. General Description

The codebook generator starts by building the root tree

node. It then "bootstraps" the rest of the codebook. After each

tree level is built and optimized, a gain threshold is

assigned to that level based on the user-supplied signal-to-noise

I ratio goal and the mean square error of the training vectors

(mean square distance between the training vectors and the

codebook vectors to which they belong). Codebook generation

terminates when (1) the number of tree levels is such that, at

the highest level, the largest possible gain falls at or below

the gain threshold, or (2) tree growth has reached a limit based

on available memory. When the tree size is limited by available

memory, the codebook is suboptimal, and the signal-to-noise ratio

I is degraded.

4.2.3. Signal-to-Noise Ratio Goal

The codebook generator starts by soliciting a signal-to-

I noise ratio goal expressed in decibels with reference to the

highest gray level (255). The higher the goal, the better

the transmitted image quality, but at the expense of compression.

Subject to memory limitations, the higher the goal, the larger

4 - 10

1

I
I

5.l.the tree, the greater the number of codebook vectors, and the

longer the codebook generator run. The codebook generator

converts the dB value to an absolute square error, i.e., the

I square of the distance between a starting and ending zero-mean

vector. This is called the vector mean square error goal.

4.2.4. Tree Growth

Figure 4.5 shows a part of the search tree during codebook

generation. Assume that level L-I has just been optimized and

that level L is about to be optimized.

I Gain thresholds have already been assigned for tree levels 0

through L-l. Tree level 0 has a low threshold, level 1 has a

higher threshold, and level L-1 has the highest so far.

The parent node, P, has a codebook vector that is optimum

for tree level L-1. The left child node, C, has a copy of that

codebook vector, and the right child node, S, has a "split"

vector. The split vector is a copy of that training vector

belonging to node P which is nearest, but different from, P's

codebook vector. This implementation of vector splitting is a

heuristic method of creating a nearby normalized vector with t .e

aim of dividing the training vectors belonging to node P into two

roughly equal portions between nodes C and S.

I Training vectors are read from the sorted training vector

file. For each training vector a tree search is performed

exactly as in the transmitter. At each tree level the

* training vector magnitude (saved in the record along with the

I 4 - 11

I

I
I
I
I
I
I
i

I /, ¢/
Tree Level L-1 Parent Node /

(Level just optimized)

I
Tree Level L Left Child C, Sit Noide

(Level being optimized) (Copy) Node (Split) Node

// \/ \

I /

i
I
i
I Figure 4.5 Part of Developing Codebook Search Tree

I
i 4 -12

I

I

normalized vector) is compared to the gain threshold (actually,

the magnitude squared is compared to a magnitude squared

threshold).

If the magnitude is above the threshold, the program

determines which child of the current node has the best-matching

codebook vector (which codebook vector has the larger dot product

with the training vector). The search progresses to the better

node. Ties are broken arbitrarily in favor of the left child.

3 If the training vector magnitude is at or below the gain

threshold for the current level, or if that level is level L, the

I search halts. When a training vector tree search ends at a node

in level L, its components are added to a centroid sum vector

associated with that node. The square error with respect to the

3 node's codebook vector is computed and added to an accumulating

new square error sum. If the error is not zero, but smaller than

3 any previous error for that node, then a copy of the training

vector replaces the codebook vector for the right child of the

node, i.e. in tree level L+l, if memory permits a higher level.

3 When level L is optimized, split vectors will exist at tree level

L+I.

3 If the search halts at a lower level than level L, no more

training vectors need be read. This is because the vectors are

I sorted in descending order of vector magnitude. If any training

i vector fails to reach level L, all those following it in the file

would also fail. Without the sort, the program would have to

3 test all the training vectors and ignore those that do not reach

3 4 - 13

I

I

level L.

After all training vectors reaching level L have been

processed, an update is performed. For each node P in level L-1

the total error for the two child nodes is compared with the

total for the previous training vector pass. (The first

"previous" error is set to "infinity.") If the error has

decreased significantly, the two child nodes are still

suboptimal; otherwise they are flagged "optimal," and training

3 vectors arriving at these nodes are ignored in future passes. If

the two nodes are still suboptimal, then the centroid sum vector

I for each of the two nodes is normalized and copied into the

codebook, replacing the previous codebook vectors. This is

equivalent to updating the codebook with the centroid, as in the

LBG clustering algorithm, with the constraint that all codebook

vectors are normalized. The accumulated new square error for the

two nodes becomes the old square error, and the new square error

is reset to zero.

If some tree nodes in level L have not yet been optimized,

then the training vectors are processed again, and another update

is performed. This cycle is repeated until all level L nodes are

optimized or until the maximum allowed number of iterations

(program parameter) have been performed. In the latter case, all

I remaining unoptimized nodes are declared optimal, with consequent

degradation in codebook performance.

When level L has been optimized, a tree level wrapup is

performed. The mean square error for all nodes in the level is

4 - 14

I

I
I

computed. Because the training vectors, as well as the codebook

vectors, are normalized, and because negative gains are set to 0,

the mean square error has a range of 0 to 1.0 inclusively. This

* mean square error is therefore called the normalized mean square

error. A magnitude squared threshold is computed by dividing the

vector mean square error goal by the normalized mean square error

for the tree level. The gain threshold is the square root of

this number. Both values are stored in small codebook arrays.I
4.2.5. Zero-Error Nodes

i A zero-error tree node is defined as a tree node either to

which no training vectors belong, or all training vectors

belonging to it are perfectly correlated with the node's codebook

vector. In either case, the total square error for the node is

zero. Zero-error nodes can occur at high tree levels, because

* relatively few training vectors reach these higher levels.

When a zero-error node is detected, its right child, if one

exists, is deleted. The deleted node is where the zero-error

node's split vector would have been maintained. Since, by

definition, the zero-error node has no error, there is no split

vector. If tree growth progresses past the lowest level

containing a zero-error node, the zero-error node's codebook

U vector is copied to its left child. This node, too, becomes a

* zero-error node because the training vectors reaching it comprise

a subset of those reaching its parent node. Since the training

* vectors reaching the parent zero-error node produced no error,

4 - 15

I

I
I

there can be none at the child node.

I
4.3. Transmitter Simulator

I 4.3.1. VQTX1 - Vector Index Generation

For each starting image vector (block) VQTX1 computes the

vector mean and writes it to a "mean image" for processing by the

DIS DPCM data compression system, and subtracts the mean from

each vector component to yield a starting zero-mean vector.

VQTX1 next performs a preliminary binary tree search. At

each stage, the choice of the left or right child tree node is

I based on which codebook vector has the larger dot product with

the zero-mean starting vector. The search terminates at the

lowest tree level for which the magnitude of the zero-mean input

* vector is at or below the gain threshold for that level.

(Actually, the square of the magnitude is compared with a

I stored table of magnitude-squared thresholds.) As the search

progresses, the gains and relative codebook vector indices for

all lower levels are saved in a "stack" for reasons to be

3 explained next.

VQTX1 tests whether the aain for the preliminary search

* ending level lies above the gain threshold of the next lower tree

level. If so, the final search result is the same as the

I preliminary. If not, the ending level is backed up to the next

lower level, the gain and relative codebook vector index are

replaced by the values saved in the "stack" at the lower level,

and the test is repeated. The final search ends when the

4 - 16

I

I
I

gain at the ending level is above the gain threshold for the next

lower level. If the stack is exhausted without this condition's

being met, the ending level is level 0. This final search is

needed because the gain, not the magnitude, is transmitted to

minimize distortion, as shown in Figure 4.4

Figure 4.6 illustrates why the preliminary search is based

on the starting (zero-mean) vector magnitude instead of gain, and

why the final search sometimes ends at a different tree level

from that of the preliminary search.

Were the preliminary search based on gain, the search might

I stop at a low tree level, e.g. 0, where the correlation of the

input vector with a codebook vector is so poor that the gain is

zero, even for an input vector of substantial magnitude.

(Negative gains are set to zero.) The result would be to replace

a starting block containing considerable detail with a "flat"

block, all of whose pixel gray levels are that of the mean.

The final, backward, search is needed if, at the lowest tree

level where the magnitude is at or below the gain threshold, the

Sgain is at or below the gain threshold at the next lower level.

Since the gain, not the magnitude, is transmitted, the receiver

would "think" the search ended at a lower tree level, and would

expect the wrong number of bits for the relative codebook vector

I index. Figures 4.6(a) and 4.6(b) illustrate the preliminary and

* final searches ending at the same and different tree levels

respectively.

The tree search complete, VQTXl writes the gain to a "gain

I 4 - 17

I

I
I

i Legend

Vector magnitude
Vector gain

-- Vector gain threshold

i f Preliminary and Final Searches

0tI --

0 1 2 3 4 5
Search Tree Level

* (a) Final Search Same As Preliminary

* Final Search

Preliminary Search

I
II

I 0 1 2 3 4 5

Search Tree Level

(b) Final Search Different From Preliminary

Figure 4.6 Illustration of Transmitter Tree Search

II
4 - 18

I

I

image" similar to the mean image for "transmission" by DPCM. It

also writes to an uncorrected vector index file a vector index

record containing the tree level and the relative codebook vector

index. The level is not "transmitted," but is used by program

VQTX2 for vector index correction, and by the receiver simulator

as a program check to verify that the receiver expects the same

number of relative codebook vector index bits as were

"transmitted."I
4.3.2. Mean and Gain Image Processing

I Transmission of the vector means and gains is simulated by

separate executions of the existing DIS DPCM compression system.

The DPCM simulator, employing prediction, a 3-level quantizer and

entropy coding, is a stand-alone program that operates on an

entire image. Program VQTXl generates separate "unquantized"

gain and mean "images" each containing one pixel per starting

image block. Each "image" is processed separately through the

DPCM simulator, which produces a "quantized image" and reports

* the number of bits required to "transmit" the "image." The

resulting "quantized" mean and gain "images" are approximations

of the unquantized "images."

I 4.3.3. VQTX2 - Vector Index Correction

Program VQTX2 corrects and "transmits" the relative codebook

vector indices. Correction consists of determining from the

3 received gain value (after DPCM) the tree level at which the

4 - 19

I

I
I

receiver "thinks" the tree search ended, which is also the number

of relative codebook vector index bits the receiver expects.

This tree level is the lowest for which the received gain is at

I or below the level's gain threshold. If this perceived level is

the same as the level where the final VQTX1 search ended, then

VQTX2 writes the level number and uncorrected relative codebook

vector index to a corrected vector index file. Otherwise, VQTX2

reenters the search tree via the pointer contained in the

codebook vector VQTX1 selected, and searches upward or downward

in the search tree as needed to find a codebook vector at the

I correct tree level. VQTX2 writes the correct level and relative

codebook vector index to the corrected vector index file. The

relative codebook vector index is "transmitted" as a straight

binary number without any further encoding.

Vector index correction is required mainly because the DPCM

I "transmission" of a gain value might put the received gain value

on the wrong side of a gain threshold, making the receiver expect

the wrong number of bits. Another reason for correction is

the fact that, while the correlation of an input vector with a

codebook vector improves on the average with increasing tree

level, this is not necessarily the case for an individual vector.

Occasionally, the preliminary tree search is forced to a higher

tree level because the vector magnitude is above the current

level's gain threshold, even when the gain is less at the higher

level than at the lower. When this happens, the final search may

select a lower tree level, but in this particular case, the

4 - 20

I

I
I __

ending gain is above the gain threshold. VQTX2 detects the fact

that the receiver "thinks" the search ended at a higher level and

makes the correction.I
4.3.4. Transmission Statistics

Program VQTX2, besides correcting and "transmitting" the

relative codebook vector indices, compiles and reports statistics

for system performance evaluation. The statistics report

includes: (1) the number of pixels per block; (2) the total

number of blocks "transmitted;" (3) the total number of codebook

vector indices "transmitted" (No index is "transmitted" if the

corrected tree level is zero.); (4) the total number of

codebook vector index bits "transmitted;" (5) the average number

of codebook vector index bits per pixel by the present method, by

minimum-entropy coding of the relative codebook vector indices

and by minimum-entropy coding of the absolute codebook vector

indices; (6) a table showing, for each search tree level, the

number of tree searches ending at that level after correction,

the codeword length for that level (equals the level number) and

the theoretical minimum-entropy codeword length for that level

* based on the statistics of the current transmission; and

finally, (7) the number of vector index corrections to higher and

I to lower tree levels.

I
I

I 4 - 21

I

I

4.4. Receiver Simulator

The receiver simulator, VQRX, is trivial. It builds the

output image from the DPCM-quantized mean and gain images and

from the corrected codebook vector index file. It also performs

a system error check.

4.4.1. Image Reconstruction

Program VQRX "receives" each block one at a time by reading

a mean from the quantized mean "image," a gain from the quantized

gain "image" and a relative codebook vector index from the

corrected vector index file.

VQRX searches the gain threshold table in the codebook to

determine the lowest tree level for which the received gain is

less than or equal to the threshold. The level number is the

number of bits, including none for level 0, the receiver expects

to receive for the relative codebook vector index. VQRX then

looks up the codebook vector by adding the relative codebook

vector index (known to be 0 if the level is 0) to the base

codebook vector index for the level. VQRX multiplies each

codebook vector component by the received gain and adds the

received mean. Finally, it writes the resulting output vector,

reorganized as an image block, to the output image.I
4.4.2. System Error Check

Instead of actually assembling and disassembling a bit

stream, the simulation system simply writes and reads the data

4 - 22

I

I

for each image block to and from files. DPCM transmission of the

means and gains is simulated by a separate stand-alone program as

explained above.

The system does, however, have a safeguard against the

possibility of a design or programming error's being hidden by

the lack of a bit stream. Each record of the corrected codebook

vector index file contains two items: (1) the relative codebook

vector index, which would be transmitted in an actual system, and

the tree level number to which that index pertains. This level

number would not be transmitted; it is provided for program

I checking purposes only. The receiver simulator determines the

level number, L, from the gain and the gain threshold table

contained in the codebook. It then checks that L is equal to the

level number contained in the record, and that the relative

codebook vector index can be expressed in L bits. The

possibility of transmission errors is ignored because Group 4

facsimile transmissions are guaranteed to be error-free.

I
I
I
I
I

I 4 - 23

I

I

5.0 Simulation

5.1. Imaae Selection Criteria

5.1.1. Test Images

The selection of the test images employed in the simulations

was based on several factors, including image quality,

availability and feature content. The test images were

the four standard gray scale images developed by DIS for the NCS

in a previous study and since adopted by the CCITT. The

i standard gray scale image selections were based on a set of

characteristics designed to thoroughly test various gray scale

I transmission techniques.

i Beyond the advantages these images provide in terms of image

quality and availability, each image was selected because it

contained several distinctive features that would aid in the

subjective evaluation of the output images. The IEEE image is

representative of an identification card, combining both

photographic and textual information, and includes a high

contrast wedge that aids in the evaluation of an algorithm's

effect on resolution. The house and sky image contains large

areas of gradually changing gray scale, several areas of varying

texture, and various horizontal, vertical and diagonal lines.

The house with trees image is similar, but also contains high

i detail regions. The aerial photograph is a low contrast image of

i high detail and relatively low resolution.

i 5 -1

I

I
I

5.1.2. Training Image

The training image is a composite of three of the four test

I images. The IEEE image was deliberately omitted so any tendency

for a codebook to "memorize" the training image would be revealed

by better performance with the three images from which the

training image was composed than with the fourth. The training

image contains three broad, horizontal stripes, each representing

mostly "busy" parts of one of the three test images. "Busy"

(high detail, high contrast) parts of the images were chosen to

produce high-magnitude vectors that, during codebook generation,

* would propagate co the highest search tree level.

Choosing a broad stripe from each of the three contributing

test images allows further evaluation of the "memorization"

problem. If memorization were significant, one would observe in

I an encoded image a stripe of improved quality where the test

image matches the training image stripe. The actual simulations

showed no evidence of memorization.

5.2. Simulation Parameters

* The following simulation parameters were maintained constant

throughout all the tests except where otherwise noted.

I Block Size

* The block size is 16. Each block is four pixels wide by

four high. This is a program parameter, and can easily be

* changed.

I

I

* Mean and Gain Transmission

The means and gains were "transmitted" by PCM, not DPCM as

I originally intended, at a total cost for both of 16 bits per

block, or one bit per pixel. Initial tests showed that the

mean and gain "image" statistics were sufficiently different

from those of ordinary images that the existing DIS

predictor and 3-bit quantizer introduced excessive

distortion, far more than did quantization of the residue

vectors. Tailoring the DPCM parameters to mean and gain

I "images" was deferred in favor of evaluating vector

quantization itself. Thus, the "quantized" mean and gain

"images" were actually the unquantized images generated by

program VQTX1.

Maximum Search Tree Level

* Encoding of the house and sky image was simulated with

codebooks generated with a maximum search tree level of 11

(4095 codebook vectors) and 13 (16383 codebook vectors) to

evaluate the effect of increased codebook capacity on image

quality and data compression with other parameters held

constant. If the signal-to-noise ratio goal, specified when

a codebook is generated, is sufficiently high that tree

I growth terminates because of memory limits set by the

maximum tree level, then image quality is degraded in areas

of high contrast.

Number of Training Vectors

5 3

I

The training vector file contains all the training vectors

derived from the training image (65000) sorted in descending

order of vector magnitude, i.e., the highest contrast blocks

I come first. The codebook generator contains a parameter

that specifies how many, if not all, of these training

vectors are read during any one iteration. Because codebook

* generation runs are long (hours of execution time), the

codebooks used in these simulations were derived from much

fewer than 65000 training vectors. Most of the simulations

were performed with 12000, 6000, and 3000. It is important

to note that selecting the first N training vectors selects

the N vectors having the largest magnitudes, not those from

a specific part of the training image.

Signal-To-Noise Ratio Goal

The signal-to-noise ratio goal, entered during codebook

I generation, is the variable to which the tradeoff between

* image quality and data compression is most sensitive.

Simulations were performed with values of 50, 40 and 30 dB.

Image Resolution

The resolution of the training image and all test images is

200 pixels per inch.

Image Size

IeSAll test images are 512 pixels wide by 512 high. These

* dimensions were selected to facilitate the display,

photographing, and printing of the output images.

I

I -

I
I

* 5.3. Evaluation Criteria

Results were evaluated for data compression, RMS error and

I subjective image quality.

Data compression is expressed in bits per pixel. In all

cases the values were 1.x, where the 1 is the cost, for a 16-

pixel block, of transmitting the block mean and gain by

PCM, and the x is the cost (less than one bit per pixel) of

transmitting the relative codebook vector index.

The RMS error is the root-mean-square-error of the encoded

I image pixels when compared to the corresponding pixels of the

* original test image.

The encoded images were evaluated subjectively and given

subjective image quality ratings (SIQR) as defined below:

Rating DefinitionI
0 Image is not recognizable.

1 Almost no detail is evident;
only general outlines of objects remain.

2 Loss of edge detail almost total;
objects in image unrecognizable.

3 Image is slightly recognizable; edge
boundaries severely distorted.

4 Image is partially recognizable; complete
loss of detail in several image regions is
evident.

5 Image is recognizable, but shows
severe blocking artifact throughout
and poor detail rendition.

I

I!-

I

6 Blocking is severe in regions of
high detail, and detail rendition
is marginal.

7 Blocking is moderate in high-detail
areas, and detail rendition is fair.

8 Blocking is slightly evident, and detail
rendition is good.

9 No blocking is evident, and detail
rendition is very good.

I 10 Encoded image is indistinguishable
from original image.

U The subjective image quality evaluation was performed using

both photographic and video display representatives of the output

images. The photographs were produced by using a high quality 4

* x 5 camera to photograph each image displayed on a high

resolution gray scale monitor.I
* 5.4. Results

The house and sky image simulations were performed using the

various combinations of maximum tree level, number of training

vectors and codebook signal-to-noise ratio goals. The purpose of

these simulations was to explore, with one test image, the system

performance over a wide range of parameters to establish

parameters for the remaining simulations. The results are shown

* in Table 5.1.

These preliminary simulations showed that there was

* insignificant change in data compression and image quality when

the maximum tree level was increased from 11 to 13. The

remaining simulations were therefore performed with codebooks

S5- 6

I

Number of Training Vectors

1500 3000 6000 12000

B/P: 1.24 B/P: 1.25 B/P: 1.27 B/P: 1.29
50 ,RMS: 2.94 RMS: 2.61 RMS: 2.39 RMS: 2.19

ISIQR: 5.0 SIQR: 9.0 SIQR: 9.3 SIQR: 9.5

0

o40

B/P: 1.03 B/P: 1.03
Cn 30 RMS: 4.31 RMS: 4.33

Image:House nd SkySIQR: 6.5 1SIQR: 6.5
Legend:
B/P its er Pxel(a) Maximum Codebook Tree Level = 13

RM S RM S Error N m e f T a n n e t r
SIOR Subjective Image Nme fTann etr

Qult aig1500 3000 6000 12000

B/P: 1 .23 B/P: 1 .26
- 50 RMS: 2.63 RMS: 2.29

SIQR: 8.5 SIQR: 9.4

0

40_ __

B/P: 1.03
30 RMS: 4.33

1 1 1SIOR: 6.5

(b) Maximum Codebook Tree Level - 11

Table 5.1 Varying Number of Training Vectors and Maximum Codebook Tree Level

5I

I

I generated with the maximum tree level set at 11, i.e., a maximum

of 4095 codebook vectors.

Encoding and decoding of all four test images were simulated

with codebooks generated with all nine combinations of 12000,

6000 and 3000 training vectors and signal-to-noise ratio goals of

I 50, 40 and 30 dB, for a total of 36 simulations.

Table 5.2 shows the compressed bit rates, RMS errors and

subjective image quality ratings (SIQR) for the IEEE face image

for all nine codebooks. Tables 5.3, 5.4, and 5.5 show similar

data for the house and sky, house with trees, and aerial

photograph images. These tables show how a given image is

affected by the various codebook generation parameters.

Table 5.6 shows the same data for all four images with the

number of training vectors held constant at 12000. The figure

numbers under the image titles are those of photographs of the

* encoded and decoded images.

Tables 5.7 and 5.8 are similar, with the number of training

I vectors constant at 6000 and 3000 respectively.

* Table 5.9 (two pages) is an index to the photographs of all

original and processed images. The photographs are displayed in

Figures 5.1 - 5.40.

Each of the four images is displayed in 10 photographs, the

* first showing the original image (digitized to the 8-bit gray

scale), and the other nine showing the results of encoding and

decoding the same image using the nine combinations of number of

* training vectors and signal-to-noise ratio goals.

5 -8

I

Legend:

B/P Bits per Pixel

IRMS RMS Error

SIQR Subjective ImageI Quality Rating

Number of Training Vectors

3000 6000 12000

B/P: 1.29 B/P: 1.31 B/P: 1.33
50 RMS: 2.31 RMS: 2.13 RMS: 2.06

2.SIQA: 8.5 SIOR: 9.0 SIQR: 9.5
0 BIP: 1.11 B/P: 1.14 B/P: 1.16

o 40 RMS: 3.18 RMS: 2.61 RMS: 2.52
SIOR: 6.8 SIOR: 7.8 SIQR: 8.0

z BIP: 1.02 B/P: 1.03 B/P: 1.04

Table 5.2 Varying Codebook Parameters: IEEE Face

5I

i
I
I
I

Legend:

B P Bits per Pixel

RMS RMS Error

SIQR Subjective Image
Quality Rating

I
* Number of Training Vectors

3000 6000 12000

B/P: 1.23 B/P: 1.24 B/P: 1.26
50 RMS: 2.63 RMS: 2.44 RMS: 2.29

SIOR: 8.5 SIOR: 8.8 SIQR: 9.4

0 B/P: 1.10 B/P: 1.12 B/P: 1.14.2. 40 RMS: 3.29 RMS: 2.84 RMS: 2.67
i6SIQR: 7.0 SIQR: 7.5 SIQR: 8.0

zB/P: 1.02 B/P: 1.03 B/P: 1.03
30 RMS: 4.56 RMS: 4.31 RMS: 4.33

SIIR: 5.0 SIOR: 5.5 SIOR: 6.5

I

Table 5.3 Varying Codebook Parameters: House and Sky

I
5 -I10,I

I

I
I
I
I

Legend:

B/P Bits per Pixel

RMS RMS Error

SIQR Subjective Image
Quality Rating

I
Number of Training Vectors

3000 6000 12000

B/P: 1.56 B/P: 1.58 B/P: 1.59
50 RMS: 7.59 RMS: 7.07 RMS: 6.70

SIQR: 8.0 SIQR: 8.4 SIQR: 9.0

o B/P: 1.34 B/P: 1.41 B/P: 1.44.20 4o RMS: 8.83 RMS: 7.36 RMS: 6.93
ii SIQR: 6.0 SIQR: 6.4 SIQR: 7.3

B/P: 1.09 B/P: 1.13 B/P: 1.15
I30 RMS: 11.2 RMS: 10.2 RMS:9.75

SIIR: 5.0 SIOR: 5.2 SIOR: 5.5

I

Table 5.4 Varying Codebook Parameters: House with Trees

I 5 -ii

I
II

I
I
I

Legend:

B/P Bits per Pixel

i RMS RMS Error

SIR Subjective Image
Quality Rating

I
Number of Training Vectors

3000 6000 12000

B/P: 1.52 B/P: 1.54 B/P: 1.56
o . 50 RMS: 4.00 RMS: 3.66 RMS: 3.43
:S SIQR: 7.8 SIQR: 8.3 SIR: 9.0I BP: 1.30 B/P: 1.35 B/P: 1.38
.o 40 RMS: 5.00 RMS: 4.05 RMS: 3.79
ccSIQR: 6.5 SIQR: 7.0 SIOR: 7.5

cc
z B/P: 1.08 B/P: 1.11 B/P: 1. 13;) 30 RMS: 7.26 RMS: 6.63 RMS: 6.39

SIOR: 5.0 SIQR: 5.5 SIQR: 6.2

i Table 5.5 Varying Codebook Parameters: Aerial Photograph

I5 - 12

I

I
I
I

* iConstant Parameters

Image Resolution: 200 pixels per inch
Image Size: 512 X 512 pixels
Block Size: 4 X 4 pixels

SiMaximum Tree Level: 11

Image Codebook S/N Compressed RMS Subjective Image
Ratio Goal Bits per Pixel Error Quality Rating

50 1.33 2.06 9.5IEEE Face ____ ___

(Figs. 5.2 - 5.4) 40 1.16 2.52 8.0
30 1.04 4.23 6.2

50 1.26 2.29 9.4House and Sky 40_1_14_2.6 8.0

(Figs. 5.12 - 5.14) 40 1.14 2.67 8.0
i_30 1.03 4.33 6.5

50 1.59 6.70 9.0

(Figs. 5.22- 5.24) 40 1.44 6.93 7.3
I 30 1.15 9.75 5.5

50 1.56 3.43 9.0
Aerial Photograph 50 1.56 3.43 75

(Figs. 5.32 - 5.34) 40 1.38 3.79 7...._ _

30 1.13 6.39 6.2

I
I
I

Table 5.6 Performance and Compression with 12000 Training Vectors

I
5 - 13

I
I

U
I
I

I Constant Parameters

Image Resolution: 200 pixels per inch
Image Size: 512 X 512 pixels
Block Size: 4 X 4 pixels

* Maximum Tree Level: 11

Image Codebook S/N Compressed RMS Subjective Image
Ratio Goal Bits per Pixel Error Quality Rating

IEEE Face 50 1.31 2.13 9.0

(Figs. 5.5 - 5.7) 40 1.14 2.61 7.8
30 1.03 4.24 5.7

House and Sky 50 1.24 2.44 8.8

(Figs. 5.15 - 5.17) 40 1.12 2.84 7.5
I 30 1.03 4.31 5.5

House with Trees 50 1.58 7.07 8.4

(Figs. 5.25 - 5.27) 40 1.41 7.36 6.4
I_30 1.13 10.2 5.2

50 1.54 3.66 8.3Aerial Photograph 40 1.35 4.05 7.0
(Figs. 5.35 - 5.37) 40 1.35 4.05 7.0I ___r___ 30 1.11 6.63 5.5

I
I
I

Table 5.7 Performance and Compression with 6000 Training Vectors

I
I 5- 14

I

I
I
I

I Constant Parameters

Image Resolution: 200 pixels per inch
Image Size: 512 X 512 pixels
Block Size: 4 X 4 pixels

i Maximum Tree Level: 11

I Image Codebook S/N Compressed RMS Subjective Image
Ratio Goal Bits per Pixel Error Quality Rating

IEEE Face 50 1.29 2.31 8.5

(Figs. 5.8 - 5.10) 40 1.11 3.18 6.8
30 1.02 4.57 5.2

House and Sky 50 1.23 2.63 8.5
(Figs. 5.18 - 5.20) 40 1.10 3.29 7.0

I 30 1.02 4.58 5.0

50 1.56 7.59 8.0House with Trees

(Figs. 5.28 - 5.30) 40 1.34 8.83 6.0
I_30 1.09 11.2 5.0

50 1.52 4.00 7.8
Aerial Photograph 40 1.30 5.00 6.5

(Figs. 5.38 - 5.40) 40 1.0 5.00 5
_________ 30 1.08 7.26 5.0

I
I
I

Table 5.8 Performance and Compression with 3000 Training Vectors

I
I 5- 15

I

U
U
I
I

Image Number of Codebook S/N Image
Training Vectors Ratio Goal Figure Number

(Original) (Original) 5.1
50 5.2

12000 40 5.3
30 5.4
50 5.5

IEEE Face 6000 40 5.6
I 30 5.7

50 5.8
3000 40 5.9

__30 5.10
(Original) (Original) 5.11

50 5.12
12000 40 5.13

30 5.14
50 5.15

House and Sky 6000 40 5.16
30 5.17
50 5.18

3000 40 5.19
i 30 5.20

(Continued)I
I

Table 5.9 Image Index

I
I

I
I
I
I

Image Number of Codebook S/N Image
Training Vectors Ratio Goal Figure Number

(Original) (Original) 5.21

50 5.22
12000 40 5.23

30 5.24

50 5.25
House with Trees 6000 40 5.26

_ _30 5.27
50 5.28

3000 40 5.29

I 30 5.30

(Original) (Original) 5.31
50 5.32

12000 40 5.33

30 5.34

50 5.35
Aerial Photograph 6000 40 5.36

30 5.37

50 5.38
3000 40 5.39

i 30 5.40

I
I

Table 5.9 Image Index (Concluded)

I
I

5 - 17I

IEUN

Figure 5.2 IEEE Face Oigina Image

IT=20,SR5
5I 1

ITPIIrv

Fiue53IEIaeOtu mg
IT=20,SR4

Figure 5.4 IEEE Face Output Image

NTV=12000, SNR=40

5I 1

IE~J

Fiue55IEIaeOtu mg
IT=00,SR5

IA

UFigure 5.56 IEEE Face Output Image

NTV=6000, SNR=50

5I 2

rERUJNF

II

Figure 5.7- IEEE Face Output Image

IT=00,SR5
5I 2

IEUN

Figure 5.910 IEEE Face Output ImageI NTV=3000, SNR=0

5I 2

Fiue51Ios ndSyOiia mg

I

Fiue51Ios ndSyOtu mg
IT=20,SR5

5I 2

HHPut Je

Fiue51Ios ndSyOtu mg

1 Figure 5.134 House and Sky Output Image
NTV=12000, SNR=40

5 - 2

Fiue51Ios ndSyOtu mg
IT=00,SR5

Fiur e 5.6 Hue nik utu mg

IT=00,SR4
5I 2

I ~ I

Fiur 5.7 Hue n k utu mg

IT=00,SR3

Figure 5.178 House and Sky Output Image
NTV=6000, SNR=30

5I 2

Fiue51Ios ndSyOtu mg
NTV300, SH=4

Fiue52 os ndSyOtu mg

IT=00,SR3
5I 2

ITi

URN

*0

Fiue52Ios ihTesOtu mg
IT=20,SR5

5I 2

IU

IIV

H Figure 5.234 House with Trees Output Image
NTV=12000, SNR=40

5I 2

II

Figure 5.256 House with Trees Output ImageI NTV=6000, SNR=50

5I 3

IA

Fiue52Ios ihTesOtu mg
IT=00,SR3

Figure 5.28 House with Trees Output Image
NTV63000, SNR=30

5I 3

I4

Fiue52Ios ihTesOtu mg
IT=00,SR4

UA l

Figure 5.290 House with Trees output Image
NTV=3000, SNR=3O

5I 3

Ipo

Fiue53IeilPooOiia mg

Fiue53IeilPooOtu mg
IT =20 0 ______

5I 3

IE~ JE

wa

Fiue53IeilPooOtu mg

Figure 5.334 Aerial Photo Output ImageI NTV=12000, SNR=40

5I 3

NN

Fiue53IeilPooOtu mg
IT=00,SR5

Figure 5.356 Aerial Photo Output Image
NTV=6000, SNR=50

5I 3

IEP

Fiue53IeilPooOtu mg
IT=00,SR3

Fiue53IeilPooOtu mg
IT=00,SR5

5I 3

IU

Fiue53IeilPooOtu mg
IT=00,SR4

I Figure 5.390 Aerial Photo Output Image
NTV=3000, SNR=40

5I 3

I

6.0 Conclusions and Recommendations

6.1. Conclusions

The vector quantization method selected for these

I simulations consists of the transmission of both scaler and

vector information.

For each image block, the scaler information consists of two

* items: the mean value of the block pixel gray levels (analogous

to brightness) and the gain (analogous to contrast), which is the

dot product of the difference vector and the selected codebook

vector. The difference vector is the vector derived by

subtracting the block mean from the original block pixels. The

vector information is the index to the selected codebook vector.

In the present system, the mean and gain are transmitted by

straight PCM, instead of DPCM, at a cost of 8 bits for each, i.e.

16 bits per block for both. Since each block contained 16

I pixels, the cost of transmitting the mean and gain was 1 bit per

pixel. The vector information is transmitted at a cost of

only a few tenths of a bit per pixel. This remarkable

compression of the vector data is a result of normalizing the

codebook vectors and employing the amplitude-adaptive tree

search. This approach takes advantage of the fact that the

vector magnitudes are usually small, and that low-magnitude

vectors, which can be more coarsely quantized than high, require

shorter codebook vector index word lengths.

The simulations, whose results have been presented herein,

show that the present system can transmit imagery with very good

S6- 1

I

I

quality at an average rate of approximately 1.3 to 1.5 bits per

pixel, and moderately good quality at a rate of 1.1 to 1.2

bits per pixel. Since the present system transmits the means and

I gains at a total cost of 1 bit per pixel, the cost of

transmitting the vector data is only 0.3 to 0.5 bits per pixel

for very good quality and 0.1 to 0.2 bits per pixel for

* moderately good quality.

It is conservatively estimated that further effort could

* reduce the total cost of transmitting the means and gains to

approximately 0.7 bits per pixel with little performance

I degradation, and a goal of 0.5 bits would be realistic. With a

cost of 0.5 bits per pixel for the scaler data, the total average

bit rate would be 0.6 to 0.7 bits per pixel for moderately good

quality and 0.8 to 1.0 bits per pixel for very good quality.

These estimates are based on the present block size of 16 pixels.

* The simulation results lead to the following additional

conclusions:

1. The adaptive amplitude tree search and normalization of

3 the codebook vectors yield very efficient vector data

transmission by straight binary coding of the relative

3 codebook vector indices. Table 6.1 compares the bit

rates for the vector data with straight binary coding to

I that with theoretical minimum-entropy coding. Entropy

i coding would reduce the bit rate by only a few hundredths

of a bit per pixel.

3 2. Building the training vectors from a composite image

I

I
I

derived from three of the four test images, sorting the

* training vectors into descending order of training vector

magnitude (highest-contrast blocks come first) and

selecting only the first 12000 sorted training vectors

from a total of 65000 lead to a robust codebook with no

evidence of memorization. While different images yielded

different bit rates for a given image quality, there was

no evidence of correlation between compression and

* whether or not a test image was included in the training

image. The IEEE face, which was not included in the

I training image, had better compression than two of the

three other images. Only the house and sky image was

better.

3. While RMS error, or some similar objective distortion

measure, is the only tractable approach to generating a

near-optimal codebook, a subjective measure is the only

valid gauge of how well the system performs. A case in

point is the house with trees image, which has, for a 50-

dB codebook with 12000 training vectors, an RMS error of

6.7 vs. 2.08 for the IEEE face, 2.29 for the house and

sky and 3.43 for the aerial photograph; yet all four

images have very good subjective image quality. The

* probable reason for this disparity is that this image is

very "busy." While busy images generally have fairly

large RMS errors, the distortion tends to be camouflaged.

I
*!-

I
i

4. Subjective distortion consists mainly of a combination of

blocking and loss of detail. "Blocking" refers to false

I edges between adjacent blocks when the vector

quantization is not fine enough to correct for large

differences between adjacent block means. As the

codebook signal-to-noise ratio goal was increased from 30

to 50 dB, blocking was reduced in both severity and

prevalence, and detail rendition improved. With the 50-

dB, 12000-training-vector codebook, blocking was

virtually absent and detail rendition was excellent.

6.2. Recommendations for Further Study

6.2.1. Scaler Data Compression

Since the present system requires one bit per pixel for the

I scaler data, which are transmitted by PCM instead of DPCM, and

only a few tenths of a bit per pixel for the vector data, effort

should be directed toward compressing the scaler data.

The existing DIS DPCM system performs well for ordinary

images, but not so well for mean and gain "images," each of which

* has one "pixel" (mean or gain value) per (16-pixel) block of the

original image.

A mean image has less correlation between adjacent "pixels"

* than does an ordinary image; hence the existing predictor is

suboptimal. Moreover, the 3-bit quantizer is probably too coarse

to handle the large prediction errors. It is estimated

6 5

I

that with the predictor coefficients tailored to mean "images,"

with finer prediction error quantization than the present 3 bits,

and with variable-length coding, the mean values could be

I transmitted in an average of 4 bits with acceptable error.

A gain image has large areas of slow gray-level variation

punctuated by occasional sharp spikes. Viewed on a monitor, a

* gain image resembles a white-on-black outline drawing like a

chalk drawing on a blackboard. The white outlines occur at

edges and similar abrupt changes of gray level in the original

image. A histogram of a gain image from a simulation with a 50-

dB codebook generated from 12000 training vectors (best image

quality) shows that with variable-length coding, 8-bit gain

values could probably be transmitted error-free at an average

rate of 6 bits without employing prediction. An appropriate

prediction scheme, for example simple delta modulation, may lead

I to further compression, e.g. 4 or 5 bits, with slight error.

The combination of 4 bits for the mean and 6 bits for the

gain, spread over a 16-pixel block, gives a conservative

mean/gain transmission rate of 0.625 bits per original

image pixel. Since the vector data compress to 0.1 to 0.5 bits

per pixel, the overall transmission rate should be less than one

bit per pixel with good image quality, and slightly over 1 bit

I per pixel (e.g. 1.1) with very good image quality. If the

mean/gain rate can be reduced to 0.5 bits per pixel, then overall

compression rates of considerably less than one bit per pixel can

* be expected.

S6- 6

I

I
I

6.2.2. Interpolative Vector Quantization

Hang and Haskell("] describe a vector quantization

method in which the difference vector to be quantized is formed

by subtracting from the original block pixel values an

interpolative surface instead of the block means. Instead of

transmitting the block means by PCM or DPCM, the transmitter

transmits a sample pixel, e.g. the upper left, of each block.

The transmitter and receiver both compute, for all the pixels in

any one block, estimated values which interpolate the sample

I values of the current and neighboring blocks. The differences

i between the actual pixel gray levels in the block and the

estimated values are vector quantized.

Interpolative vector quantization reduces the blocking

artifact, because interpolation tends to smooth the block edges

prior to vector quantization. Moreover, it takes advantage of

correlation over neighboring blocks, and therefore would probably

reduce the estimation error that must be vector-quantized.

* Reduced estimation error leads to smaller residual vector

magnitudes, which, with the present amplitude-adaptive normalized

vector quantization system, could yield even better vector data

compression than was achieved with the present system.I
6.2.3. Signed Gain Values

In the present system the gains always have non-negative

values. If the mismatch between a vector to be quantized and the

I

I

selected codebook vector is so bad that the dot product is

negative, the gain is treated as zero, and the pixels of the

reconstructed block all have the mean value. Allowing the gains

to have both positive and negative values would provide for the

possibility of a given codebook vector's matching, exactly or

approximately, a difference vector and its negative. For

example, a light-to-dark and a dark-to-light edge with the same

relative position and orientation in their respective blocks

would require two codebook vectors in the present system,

but only one with signed gain values. (A normalized correlation

I coefficient of -1 is just as good as +1.) Signed gain values may

i therefore improve both image quality and compression.

Introducing signed gain values has the drawback of requiring

* one more bit of gain data per block or one less bit of gain

precision. Experimentation would be required to determine

* whether the advantage outweighs the drawback.

I 6.2.4. Larger Block Size

A larger block has the potential of producing greater data

compression at the expense of a larger codebook. The scaler data

(e.g. mean and gain) would be spread over more pixels, but not in

proportion to the number of pixels per block. If the mean values

I are taken over larger blocks, there would be more variation

i between adjacent mean values and larger residual error values to

vector quantize after subtracting the mean. If interpolation is

employed, the estimation error gets worse as the points between

I

I

which the pixels are interpolated become more widely spaced.

More than one such point per block may need to be transmitted.

Because the maximum difference vector magnitude increases as

the square root of the block size, more than 8 bits of gain

precision may be required for the gain values, or the gains may

have to be scaled down during transmission, with consequent-loss

of precision. Thus, while increased block size should reduce the

bit rate of the vector data, reduction in the scaler data bit

rate may be less than proportional to the block size.

Estimating codebook size as a function of bI k size is

difficult because of vector clustering. Any size estimate that

ignores clustering would be astronomical. The codebook memory

requirements vary by more than the square of the block size,

because the vector record length is proportional to the block

size, and the number of vectors is considerably more than

I proportional. A rough estimate of the number of codebook vectors

required for a larger block could be derived by evaluating the

numbers required for, say, a 50-dB signal-to-noise ratio goal

with block sizes of 4 and 9 as well as the present 16, and then

extrapolating to the larger block size.

6.2.5. Codebook Generator Refinements

I 6.2.5.1. Faster Algorithm

With a more complex file and data structure, the codebook

generator execution time could be reduced by a factor of

approximately half the number of search tree levels. The faster

S6- 9

I

I

I algorithm would point each training vector to the search tree

node to which it belongs in the highest tree level which has

already been optimized. This would eliminate tracing all the way

I from the tree root.

U 6.2.5.2. Signal-to-Hoise Ratio Goal for Each Tree Level

Providing the option of specifying a separate signal-to-

noise ratio goal for each tree level instead of one overall goal

would allow the fine-tuning of a codebook to force finer

quantization of low-magnitude vectors. While, from an RMS

I standpoint, low-magnitude vectors may be more coarsely quantized

u than high, small errors in smooth regions of an image are

subjectively more conspicuous than in "busy" regions. The

signal-to-noise ratio goal would have to be a monotone non-

increasing function of tree level, because the basic system

algorithm requires that the gain threshold be a monotone non-

decreasing function.

6.2.6. Necessity of Separate Codebook for Each Resolution

The simulations were performed for only one image resolution

value so the effects of varying several codebook parameters could

be evaluated with resolution held constant. It is conjectured

I that a separate training image and codebook would be required for

different resolutions. This could be tested quickly by

simulating a few test images at different resolutions with the

present 50-dB, 12000-training-vector codebook.

I 6 - 10

I

I

6.2.7. Hardware/Firmware Implementation

Once all parameters of a vector quantization system have

l been optimized by software simulation, a hardware/firmware

implementation should be investigated. For maximum speed, as

much parallel processing as possible should be built into the

system. If processing is performed on-line, then speed is

essential to minimize connect-time costs. If local mass storage

is available, then the compressed data could be generated and

stored off-line and then transmitted. The receiver could store

the compressed data locally and reconstruct the image off-line.

With this approach, fast processing improves total throughput,

but does not reduce connect-time costs.

1
I
I
I
I
I
I
I

l 6 - 1i

I

rI

ReferencesI
1. STANDARD GRAY SCALE IMAGES USER'S MANUAL, Delta Information

Systems, Inc., NCS Contract Number DCAI00-83-C-0047

2. Gersho, A., "On the Structure of Vector Quantizers," IEEE

Transactions on Information Theory, V. IT-28, No. 2, March

1982, pp 157-166.

3. Linde, Y., Buzo, A., and Gray, R. M., "An Algorithm for

Vector Quantizer Design," IEEE Transactions on

Communications, V. COM-28, No. 1, Jan. 1980, pp. 84-95.

U 4. Gray, R. M. and Linde, Y., "Vector Quantizers and Predictive

Quantizers for Gauss-Markov Sources," IEEE Transactions on

Communication, V. COM-30, No. 2, February, 1982, pp. 381-

389.

1 5. Huang, H-M and Woods, J. W., "Predictive Vector Quantization

of Images," IEEE Transactions on Communication, V. COM-33,

I No. 11, November 1985, pp. 1208-1219.

3 6. "Component Vector Quantization," Annex 4 of CCITT Stud

Group VIII, Geneva, 1-12 December 1986.

7. Helden, J. and Boekee, D. E., "Vector Quantization Using

a Generalized Tree Search Algorithm," Proc. 5th Symposium on

Information Theory in the Benelux, Aalten, May 1984, pp. 21-

27.

3 8.Dutch, PTT, "A 384 Kbit/s Coding Scheme Based Upon Vector

Quantization for Video Conferencing."

I 9.Gersho, A. and Ramamurthi, B., "Image Coding Using Vector

Quantization," Proc. ICASSP, 1982, Paris.

6 - 12

I

10. Computer Simulation of Gray Scale Compression Technique

for Group 4 Facsimile, Final Report to National

Communications System under Defense Communications Agency

Contract Number DCA100-83-C-0047, Task Order Number 84-002

ii. Hsueh-Ming Hang and Barry G. Haskell, "Interpolative Vector

Quantization of Color Images," IEEE Transactions on

Communications, V. 36 No. 4, April, 1988, pp 465-470

II'
I
I
I
I
I
II,
I
I

I
i i ' I I I II6-13

